

A new approach

to identify the limiting processes

at electrochemical interfaces

Anja Bieberle-Hütter

Dutch Institute for Fundamental Energy Research (DIFFER), Eindhoven

2 Departments: Solar Fuel and Fusion

Solar fuel program lines:

- I. Non-thermal chemical processes
- II. Functional materials and interfaces
- III. Light-matter interaction

Novel non-thermal routes to improve kinetics and selectivity of key catalytic processes

Presentation by Waldo Bongers, this afternoon

2 Departments: Solar Fuel and Fusion

Solar fuel program lines:

- I. Non-thermal chemical processes
- **II. Functional materials and interfaces**
- III. Light-matter interaction

Understanding the **structure-property** relations of **functional materials** and the **processes** occuring at the **electrode-electrolyte interface**

Photo-electrochemical cell with new electrodes

T. Stoll et al., Int. J. Hydrogen Energy (2016).

DIFFER – Science for Future Energy

2 Departments: Solar Fuel and Fusion

Solar fuel program lines:

- I. Non-thermal chemical processes
- II. Functional materials and interfaces
- **III.Light-matter interaction**

Improve chemical processes by exploring nanostructured functional materials to enhance light capture and absorption and charge transport

Plasmon enhanced catalysis on metal nanoparticles

Electrochemical Interfaces

Water splitting

Water splitting

Semiconductor Electrolyte Meta

Fuel Cells

Electrolyser

Batteries

Increase in performance is required!

Photoelectrodes for Water Splitting

Dynamic and complex electrochemical interface.

Main Research Questions

Case Study: Photoanode Material Hematite (Fe₂O₃)

- Suitable bandgap of 2.1 eV
- Abundance
- Non toxic
- Stable
- Low cost

- Short diffusion length
- High e-hole recombination rate

Fe₂O

FTO

Fe₂O₃

FTO

Sluggish kinetics

9

Electrochemical Properties of Fe₂O₃

Case Study: Fe₂O₃

Fabricate tailored photoelectrodes with advanced chemistry and architecture

Electrochemical Model

Rossmeisl and Nørskov, J. Electroanal. Chem. (2007).

Zhang and ABH, ChemSusChem (2016).

Reactions steps

$$ad + OH^{-} + h \stackrel{k_{1}}{\longleftrightarrow} OH_{ad}$$
(1)

$$OH_{ad} + OH^{-} + h \stackrel{k_{2}}{\longleftrightarrow} O_{ad} + H_{2}O$$
(2)

$$O_{ad} + OH^{-} + h \stackrel{k_{3}}{\longleftrightarrow} OOH_{ad}$$
(3)

$$OOH_{ad} + OH^{-} + h \stackrel{k_{4}}{\longleftrightarrow} O_{2ad} + H_{2}O$$
(4)

$$O_{2ak} \stackrel{k_{5}}{\longleftrightarrow} O_{2dl} + ad$$
(5)

$$O_{2ak} \stackrel{k_{6}}{\longleftrightarrow} O_{2aq}$$
(6)

Reaction rate $\overline{k_{f\iota}} = k_{v,max} \exp\left[-\frac{\left(E_v - E_{F,redox,i}^0 - \lambda\right)^2}{4k_BT\lambda}\right],$ $\overline{k_{b\iota}} = k_{v,max} \exp\left[-\frac{\left(E_v - E_{F,redox,i}^0 + \lambda\right)^2}{4k_BT\lambda}\right],$ $E^{0}_{F,redox,i}$: redox potential λ : solvent reorganization energy $\Delta G_i = nFE_{F,redox,i}^0$

Calculation of free energy steps by Density Functional Theory (DFT)

Rossmeisl and Nørskov, J. Electroanal. Chem. (2007).

George, ABH et al. (2018) submitted.

Oxygen Vacancies reduce Overpotential of Fe₂O₃

Oxygen vacancy per surface area (1/nm²)

Oxygen vacancies are very effective in reducing overpotential.

Zhang, ABH et al., J. Phys. Chem. C (2016).

Electrochemical Model

Reactions steps

$$ad + OH^{-} + h^{+} \underset{k_{-1}}{\overset{k_{1}}{\leftrightarrow}} OH_{ad} \qquad (1)$$

$$OH_{ad} + OH^{-} + h^{+} \underset{k_{-2}}{\overset{k_{2}}{\leftrightarrow}} O_{ad} + H_{2}O \qquad (2)$$

$$O_{ad} + OH^{-} + h^{+} \underset{k_{-3}}{\overset{k_{3}}{\leftrightarrow}} OOH_{ad} \qquad (3)$$

$$OOH_{ad} + OH^{-} + h^{+} \underset{k_{-4}}{\overset{k_{4}}{\leftrightarrow}} O_{2ad} + H_{2}O \qquad (4)$$

$$O_{2ad} \underset{k_{-5}}{\overset{k_{5}}{\leftrightarrow}} O_{2dl} + ad \qquad (5)$$

$$O_{2dl} \underset{k_{-6}}{\overset{k_{6}}{\leftrightarrow}} O_{2aq} \qquad (6)$$

Reaction rate

$$\overline{k_{f\iota}} = k_{\nu,max} \exp\left[-\frac{\left(E_{\nu} - E_{F,redox,i}^{0} - \lambda\right)^{2}}{4k_{B}T\lambda}\right],$$
$$\overline{k_{b\iota}} = k_{\nu,max} \exp\left[-\frac{\left(E_{\nu} - E_{F,redox,i}^{0} + \lambda\right)^{2}}{4k_{B}T\lambda}\right],$$

George, van Berkel, Zhang, ABH, submitted (2018).

Formulation of adsorption equation

$$\frac{d\theta_{OH}}{dt} = K_1[x_{OH^-}]\theta - K_1\theta_{OH} - K_2\theta_{OH}[x_{OH^-}] + K_2\theta_0[x_{H_2O}]$$
(9)

$$\frac{d\theta_{O}}{dt} = K_{2}\theta_{OH}[x_{OH^{-}}] - K_{2}\theta_{O}[x_{H_{2}O}] - K_{3}\theta_{O}[x_{OH^{-}}] + K_{3}\theta_{OOH}$$
(10)

$$\frac{d\theta_{OOH}}{dt} = K_3 \theta_0 [x_{OH^-}] - K_{_3} \theta_{OOH} - K_4 \theta_{OOH} [x_{OH^-}] + K_{_4} \theta_{O_2} [x_{H_2O}]$$
(11)

$$\frac{d\theta_{O_2}}{dt} = K_4 \theta_{OOH} - K_{4} \theta_{O_2} - K_5 \theta_{O_2} + K_{5} \theta_{O_2} dl$$
(12)

$$\frac{dx_{O_2dl}}{dt} = K_5 \theta_{O_2} - K_{5.0} \cdot x_{O_2dl} - K_6 x_{O_2dl} + K_{6.0} \cdot x_{O_2aql}$$
(13)

$$\theta = 1 - \theta_{OH} - \theta_O - \theta_{OOH} - \theta_{O2} \tag{14}$$

Formulation of charge balance

$$j_{f} = (K_{1}[x_{OH^{-}}]\theta + K_{2}\theta_{OH}[x_{OH^{-}}] + K_{3}\theta_{O}[x_{OH^{-}}] + K_{4}\theta_{OOH}[x_{OH^{-}}]).qe.N_{0}$$
(15)

$$j_{b} = (K_{-1}\theta_{OH} + K_{-2}\theta_{O}[x_{H_{2}O}] + K_{-3}\theta_{OOH} + K_{-4}\theta_{O_{2}}[x_{H_{2}O}]).qe.N_{0}$$
(16)

$$j_{Total} = j_{f} - j_{b}$$
(17)

 \rightarrow Linearization \rightarrow Laplace transform \rightarrow Impedance calculation

George, van Berkel, Zhang, ABH, submitted (2018).

State-space modeling code set-up for water splitting.

Current-Voltage Plot

George, van Berkel, Zhang, ABH, submitted (2018).

Zandi and Hamann, Nat. Chem. (2016). 17

Surface Coverage Plot

Simulated Impedance Data

- V= 1.50 **Electrochemical Impedance Spectra** - V= 1.55 V= 1.70 V= 1.60 V= 1.75 – V= 1.65 - V= 1.80 2×10⁵ $\times 10^5$ $ω_{\min}$ =1 mHz 800 $\mathsf{Z}_{\mathsf{sim}}$ u=1.5 V R_s 2 400 <u>∽</u>ww– $-Z^{"}_{eq}(\Omega.cm^2)$ $\mathsf{C}_{\mathsf{bulk}}$ -Z["]_{sim}[Ω.cm²] ____ 400 800 1200 0.8 V_{RHE} . 1 V_{RHE} 1.2 V_{RHE} 1.5 V_{RHE} (GX) _____2 2 0 2 3 $Z'_{eq}(\Omega.cm^2)$ $imes 10^5$ $\omega_{\rm c}$ 0⊾ 2 3 Ζ' (kΩ) 2 5 0 6

George, van Berkel, Zhang, ABH, submitted (2018).

Case Study: Fe₂O₃

Next: do parameter variations and include more processes in the modeling

Conclusion and Outlook

 Electrochemical interfaces are the key to improve performance of electro-chemical energy applications.

• (Multi-scale) modeling is required to tackle this challenge.

 We can simulate electrochemical data that can be directly compared to electrochemical measurements.

Thank you

- E. Zouthout
- H. Genuit

