Electrosynthesis of lactic acid

Roman Latsuzbaia, Minouk van Oorschot, Richard van Heck, Anca Anastasopol, Elena Perez Gallent, Carlos Bach Samario, Erwin Giling, Earl Goetheer

www.voltachem.com

ECCM 2018, Den Haag, Netherlands
Content

- TNO & VoltaChem
- Background lactic acid
- Technology
- Experiments / results
- Techno-economic evaluation
- Conclusions
SPES TNO
- Carbon capture and storage
- Renewable gas
- Heat storage
- Hydrogen production/use/integration
- Chemicals from biomass
- Electrochemistry

We are working for approx. 3000 companies
Renewable electricity

ECCM report: Berenschot study
• Public-Private *Shared Innovation Program* of ~4 M€ / year, initiated by TNO, ECN and Topsector Chemistry.

• Accelerate innovation and implementation of *electrification & decarbonization* in chemicals.

• Initiate and facilitate *collaborative development* of technology and associated business models.

• Addresses both the *indirect and direct use of electricity* within the chemical industry, involving stakeholders from *chemicals, energy & equipment supply*.
Power to chemicals

- **Electro-organic synthesis**
- **CO$_2$ electro-reduction**
 - Electro-oxidation
 - Electro-reduction

- ✓ Oxidation of furfural
- ✓ Oxidation of hydroxymethylfuran
- ✓ Oxidation of alcohols
- ✓ Reduction of furfural
- ✓ Reduction of hydroxymethylfuran
- ✓ Reductive amination
- ✓ Reduction of oxygen
Focus of TNO: upscaling of electrochemical production processes & TEA
Focus of TNO: upscaling of electrochemical production processes & TEA

- Literature study and expert guess
- Downstream processing
- Economical evaluation

Electrochemical systems → Selection and design of electrochemical systems/system development → System integration & demonstration

Lab-scale

Bench-scale

Pilot-scale
Focus of TNO: upscaling of electrochemical production processes & TEA
Lactic acid production: motivation & goals

GOAL: demonstration of industrially feasible electrochemical continuous lactic acid production from a renewable feedstock

- LA demand to increase 5-8% yearly, ~400kt/year
- **Renewable feedstock:** biobased glycerol derived 1,2-propanediol (PDO)
- Selective oxidation of alcohol groups is challenge.

New environmentally-friendly circulation

Lactic acid production

- Fermentation (70-90% in 2009)
- Thermocatalytic oxidation on noble metals (Au, Pt, Pd & alloys)
- Electrochemical oxidation on noble metals (Pt, Au) in strong alkaline medium

Electrochemical production:
- No use of oxidants & minimal waste
- ~100% conversion
- Stable process
- Ambient conditions
- Control over reaction
- Low product concentration
- Stability of electrodes
- Current densities
Direct electrolysis of lactic acid

Screening of direct electrochemical oxidation on

1. **pH<1**
 - Pt, low current densities
 - PbO₂, formic and acetic acids produced

2. **pH>12**
 - Pt, Selectivity 93% LA, 17% acetic acid (2M KOH, 50 °C), low current efficiencies
 - Ni/NiOOH, formic and acetic acids produced

Chadderdon, ACS Catal. 2015, 5, 6926–6936
Mediated lactic acid electrolysis (TNO patent)

Cathode: $2H^+ + 2e \rightarrow H_2$

Anode:
- TEMPO - e \rightarrow TEMPO*
- $C_3H_8O_2 - 4e \rightarrow CH_3CH(OH)COOH$
- $CH_3CH(OH)COOH - 2e \rightarrow CH_3COCOOH$

Oxidation on Carbon based porous electrodes instead of noble metals!
Cyclic voltammetry

Cyclic Voltammetry on graphite, pH 9
- Only borate: no oxidation
- Direct oxidation PDO:
 - Peak potential oxidation PDO: 1.48V
 - Peak potential reduction PDO: 1.26V
- Indirect oxidation PDO (TEMPO added):
 - Peak potential oxidation: 1.31V
 - Peak potential reduction: 1.22V
TEMPO vs ACT

- TEMPO oxidation peak potential 1.34 V vs. RHE
- ACT oxidation peak potential 1.42 V vs. RHE
- Higher current densities with ACT
- ACT cheaper, good replacement
Lactic acid electrolysis

- Anode: carbon felt, ACT
- Anolyte: pH 10 buffer with 0.5 M Na₂SO₄
- RT
- Current density: 5-10 mA/cm²
- Current efficiency: 90% LA
- Yield LA: 80%
Lactic acid electrolysis

- Anode: carbon felt
- Anolyte: pH 10 buffer with 0.5 M Na₂SO₄
- 30 0C
- Current density: 30-40 mA/cm²
- Current efficiency: 70-80%
- Yield LA: 75%
Upscaling ongoing

- Current density >100 mA/cm²
- Yield >90%
- Current efficiency >85%
- Cell voltage <2.5V
- 3D electrodes carbon felt
- Cheap electrolyte Na₂SO₄, no buffer?
- Reactor design: optimization of electrode utilization
- DSP & Electrolyte recycling
Costs

- Total cost 300 Euro/tonne (without DSP)
- Lactic acid price 600-1000 Euro/tonne
- Price of pyruvic acid 5000 Euro/tonne (market?)

<table>
<thead>
<tr>
<th>Data used for OPEX calculation*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Current efficiency</td>
</tr>
<tr>
<td>Current density</td>
</tr>
<tr>
<td>Reaction yield</td>
</tr>
<tr>
<td>Electricity cost</td>
</tr>
<tr>
<td>Base case cell volt.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Data used for CAPEX calculation*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Current efficiency</td>
</tr>
<tr>
<td>Current density</td>
</tr>
<tr>
<td>Reaction yield</td>
</tr>
<tr>
<td>Cost of anode</td>
</tr>
<tr>
<td>Cost of cathode</td>
</tr>
<tr>
<td>Cost of membrane</td>
</tr>
<tr>
<td>Cell costs</td>
</tr>
<tr>
<td>Factor to other costs</td>
</tr>
</tbody>
</table>
Paired-electrolysis: proof-of-concept

- Production of lactic acid on both sides of the cell
- Homogenous catalyst required to catalyse peroxide mediated oxidation of PDO to LA
- Cathode: CE H2O2 71%, Yield LA 6%
- Anode: CE 75%, Yield LA 80%
Paired-electrolysis: proof-of-concept

- Production of lactic acid with co-production of CO
- Pt anode replaced with graphite & cell voltage lowered -> halving CO electrolysis costs
- CO current efficiency to be optimized
- Process upscaling strategy

\[
\text{CO}_2 + 2 \text{H}^+ + 2 \text{e}^- \rightarrow \text{CO} + \text{H}_2\text{O}
\]
Summary

- Electrochemical lactic acid produced in aqueous electrolytes and ambient conditions with high current efficiencies, 90%, and yields, 80%
- Electrolysis is cost efficient (~300 Euro/tonne), DSP research ongoing
- Paired electrolysis in order to improve business case. Proof-of concept for:
 - Lactic acid production on both electrodes
 - CO co-production on cathode
- Next step, reaction and process optimization and up-scaling
Thank you for your attention!

Dr. Roman Latsuzbaia
roman.latsuzbaia@tno.nl

Prof. dr. ir Earl Goetheer
earl.goetheer@tno.nl

www.voltachem.com