

Electrification of the Chemical Industry

Electrosynthesis of lactic acid

Roman Latsuzbaia, Minouk van Oorschot, Richard van Heck, Anca Anastasopol, Elena Perez Gallent, Carlos Bach Samario, Erwin Giling, Earl Goetheer

www.voltachem.com

ECCM 2018, Den Haag, Netherlands

Powered by:

Content

- TNO & VoltaChem
- Background lactic acid
- Technology
- Experiments / results
- Techno-economic evaluation
- Conclusions

况 volta уснем

Renewable electricity

ECCM report: Berenschot study

VoltaChem

- Public-Private Shared Innovation Program of ~4 M€ / year, initiated by TNO, ECN and Topsector Chemistry.
- Accelerate innovation and implementation of *electrification* & *decarbonization* in chemicals.
- Initiate and facilitate collaborative development of technology and associated business models.
- Addresses both the *indirect and* direct use of electricity within the chemical industry, involving stakeholders from chemicals, energy & equipment supply.

Focus of TNO: upscaling of electrochemical production processes & TEA

Focus of TNO: upscaling of electrochemical production processes & TEA

Lab-scale

Bench-scale

Pilot-scale

Focus of TNO: upscaling of electrochemical production processes & TEA

Lactic acid production: motivation & goals

GOAL: demonstration of industrially feasible electrochemical continuous lactic acid production from a renewable feedstock

New environmentally-friendly circulation

Energy Procedia. Volume 56, 2014, Pages 195–200

- LA demand to increase 5-8% yearly, ~400kt/year
- **Renewable feedstock:** biobased glycerol derived 1,2-propanediol (PDO)
- Selective oxidation of alcohol groups is challenge.

Lactic acid production

- Fermentation (70-90% in 2009)
- Thermocatalytic oxidation on noble metals (Au, Pt, Pd & alloys)
- Electrochemical oxidation on noble metals (Pt, Au) in strong alkaline medium

Electrochemical production:

- No use of oxidants & minimal waste
- ~100% conversion
- Stable process
- Ambient conditions
- Control over reaction
- Low product concentration
- Stability of electrodes
- Current densities

Direct electrolysis of lactic acid

Chadderdon, ACS Catal. 2015, 5, 6926-6936

Screening of direct electrochemical oxidation on

- 1. pH<1
 - low current densities Pt
 - PbO₂
- 2. pH>12
 - Pt
 - Ni/NiOOH •

formic and acetic acids produced

Selectivity 93% LA, 17% acetic acid (2M KOH, 50 °C), low current efficiencies formic and acetic acids produced

Mediated lactic acid electrolysis (TNO patent)

Cathode: $2H^+ + 2e \rightarrow H_2$

Anode:

TEMPO-e \rightarrow TEMPO* $C_3H_8O_2 - 4e \rightarrow CH_3CH(OH)COOH$ $CH_3CH(OH)COOH - 2e \rightarrow CH_3COCOOH$ Oxidation on Carbon based porous electrodes instead of noble metals!

Cyclic voltammetry

Cyclic Voltammetry on graphite, pH 9

- Only borate: no oxidation
- Direct oxidation PDO:
 - Peak potential oxidation PDO: 1.48V
 - Peak potential reduction PDO: 1.26V
- Indirect oxidation PDO (TEMPO added):
 - Peak potential oxidation: 1.31V
 - Peak potential reduction: 1.22V

TEMPO vs ACT

- TEMPO oxidation peak potential 1.34 V vs. RHE
- ACT oxidation peak potential 1.42 V vs. RHE
- Higher current densities with ACT
- ACT cheaper, good replacement

Lactic acid electrolysis

- Anode: carbon felt, ACT
- Anolyte: pH 10 buffer with 0.5 M Na₂SO₄
- RT
- Current density: 5-10 mA/cm2
- Current efficiency: 90% LA
- Yield LA: 80%

Powered by: TNO & ECN

Lactic acid electrolysis

• Anode: carbon felt

- Anolyte: pH 10 buffer with 0.5 M Na₂SO₄
- 30 OC
- Current density: 30-40 mA/cm2
- Current efficiency: 70-80%
- Yield LA: 75%

Powered by: TNO & ECN

Upscaling ongoing

- Current density
- Yield
- Current efficiency
- Cell voltage
- 3D electrodes
- Cheap electrolyte
- Reactor design: optimization of electrode utilization
- DSP & Electrolyte recycling

>100 mA/cm²
>90%
>85%
<2.5V
carbon felt
Na₂SO₄, no buffer?

Costs

- Total cost 300 Euro/tonne (without DSP)
- Lactic acid price 600-1000 Euro/tonne
- Price of pyruvic acid 5000 Euro/tonne (market?)

Data used for OPEX calculation*	
Current efficiency	70-90 %
Current density	100 mA/cm2
Reaction yield	100 %
Electricity cost	0.075 Euro/kWh
Base case cell volt.	2.5 V

Data used for CAPEX calculation*

Current efficiency	80 %
Current density	100 mA/cm2
Reaction yield	100 %
Cost of anode	200 Euro/m2
Cost of cathode	2000 Euro/m2
Cost of membrane	300 Euro/m2
Cell costs	500 Euro/m2
Factor to other costs	1

Paired-electrolysis: proof-of-concept

- Production of lactic acid on both sides of the cell
- Homogenous catalyst required to catalyse peroxide mediated oxidation of PDO to LA
- Cathode: CE H2O2 71%, Yield LA 6%
- Anode: CE 75%, Yield LA 80%

Paired-electrolysis: proof-of-concept

- Production of lactic acid with co-production of CO
- Pt anode replaced with graphite & cell voltage lowered -> halving CO electrolysis costs
- CO current efficiency to be optimized ۲
- Process upscaling strategy

12

Powered by: TNO & ECN

Time (min)

Summary

- Electrochemical lactic acid produced in aquoues electrolytes and ambient conditions with high current efficiencies, 90%, and yields, 80%
- Electrolysis is cost efficient (~300 Euro/tonne), DSP research ongoing
- Paired electrolysis in order to improve business case. Proof-of concept for:
 - Lactic acid production on both electrodes
 - CO co-production on cathode
- Next step, reaction and process optimization and up-scaling

Thank you for your attention!

Dr. Roman Latsuzbaia roman.latsuzbaia@tno.nl

Prof. dr. ir Earl Goetheer earl.goetheer@tno.nl

www.voltachem.com

Powered by: TNO & ECN

30-8-2018 24