

Deep decarbonisation of the Dutch heavy industry through electrification of the production of basic materials and transportation fuels

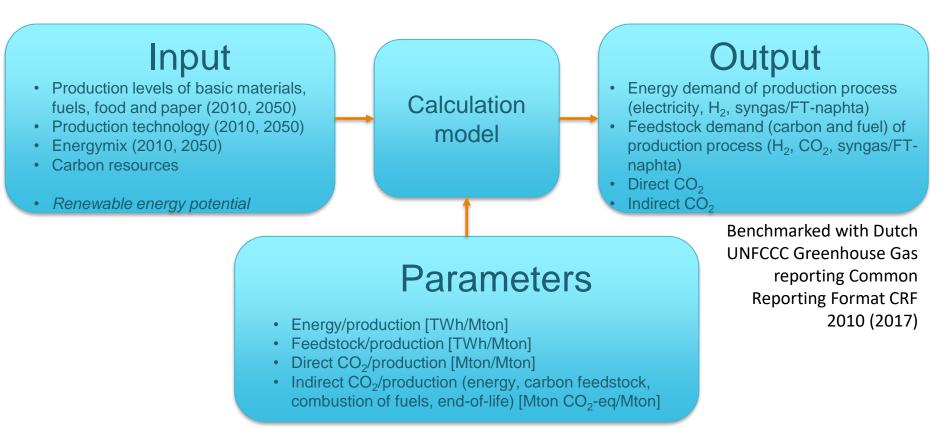
Toon van Harmelen, Clemens Schneider, Yvonne van Delft, Robert de Kler, Mathieu Baas, Vincent Kamphuis

for Climate, Environment and Energy

ECCM 29 June 2018

Content

- Objective
- Model set-up
- Methodology & assumptions
- Three what-if electrification scenarios
- Results
- Conclusions

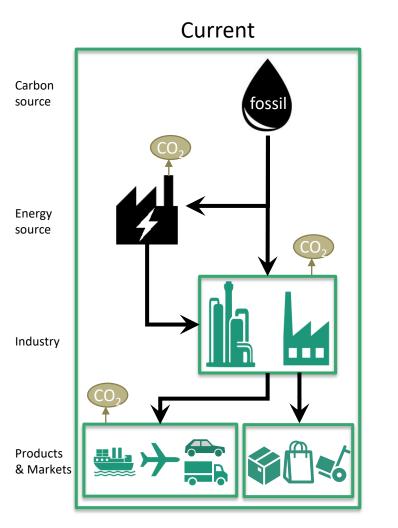


To explore deep decarbonisation scenarios for the demand of the Dutch heavy industry in 2050, through electrification of the production of basic materials and transportation fuels

- identify the technical feasibility,
- required feedstock and energy potentials and
- pros and cons of different electrification pathways

Model set-up

Based upon: Decarbonising the energy intensive basic materials industry through electrification - Implications for future EU electricity demand, Stefan Lechtenböhmer et al (2015, Wuppertal Institute & Univ of Lund)

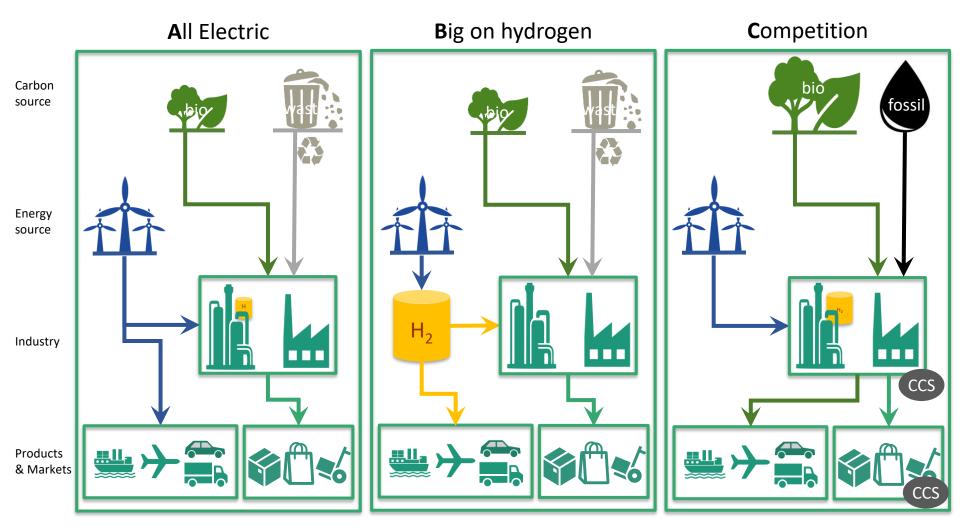


Methodology & assumptions

- Life cycle CO₂ to 0: direct fossil based CO₂ emissions at production, use phase, end-of-life of products (also of exports)
- What-if electrification scenarios sketching three distinct technology based pathways
- Modest volume growth, no structural changes ("High growth" scenario from Prosperity & environment, CPB/PBL 2015)
- Using North Sea wind power potentials, incl. 23% battery storage losses for maintaining security of supply:
 - NL: 34 GW ~ 130 TWh (PBL, 2011)
 - North Sea: 250 GW ~ 1000 TWh (Energy Odessey)
 - 90% one-way battery efficiency (projected battery efficiency, TNO 2018)

Current situation

Products


- Basic Chemicals
 - Olefins
 - Ammonia
 - Chlorine
- Metal
 - Iron & steel
 - Aluminum
- Food
- Minerals
 - Glass & ceramics
 - Cement
- Paper & pulp

Transport Fuels

- Road Transport
- Aviation
- Navigation

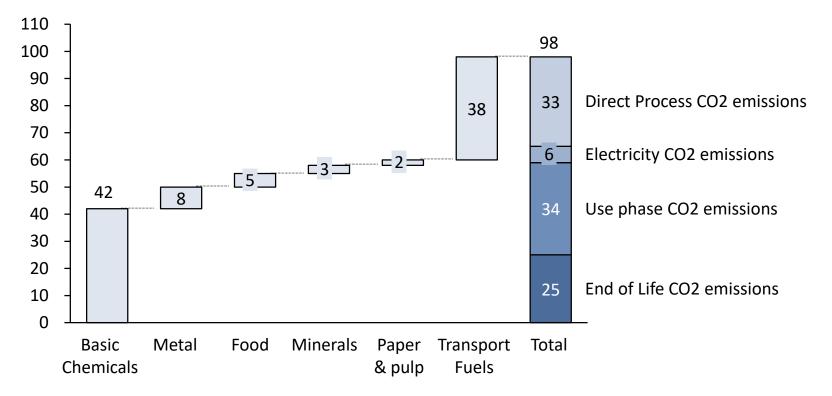
What-if electrification scenarios A, B and C

What-if scenarios: Three distinct technological pathways

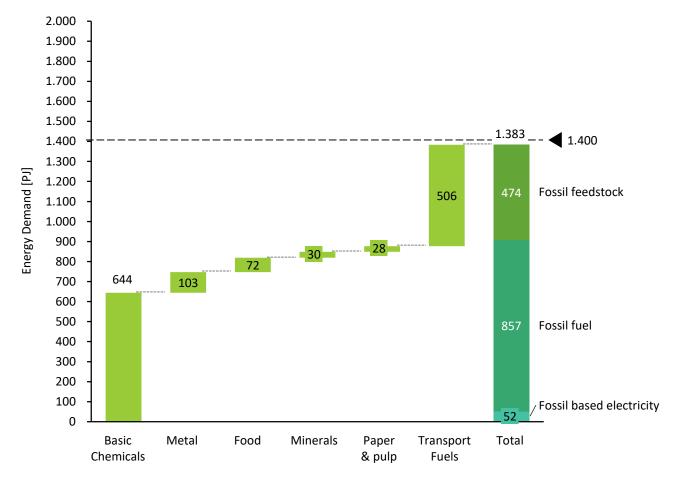
Scenario	Current situation	A. All electric	B. Big on hydrogen	C. Competition			
Short description	Production is largely fossil based	Renewable electricity as energy carrier in industry and transport. Maximal direct electrification with storage issues. Refineries are closed	Hydrogen as final energy carrier for transportation and industry, produced with conversion losses by renewable electricity. Refineries are closed. Add H2 infrastructure	A mix of energy carriers, renewable electricity (indirect electrification, hydrogen), fossil fuels with CCS and bio(syn)fuels. Add CO2 infrastructure			
Carbon source and CO2 emissions	Fossil based energy and feedstock, high CO2 emissions	Partly closed carbon cycle, waste & bio (growth) used as feedstock (olefins), near zero CO2 emissions	Partly closed carbon cycle, waste & bio (growth) used as feedstock (olefins), near zero CO2 emissions	Crude oil for olefins and coal for steel combined with CCS; scarce bio based synfuels used for transportation and small sectors, near zero CO2 emissions			
Leading stakeholders	Gas and petrochemical industry	Power sector (DC grid)	Gas sector (H2 grid)	Petrochemical industry and others			
Demand projection	Product and service demand projections are from the PBL scenario high growth, combined with assumed high energy efficiency improvements up to a factor 2						

Technological options by subsector and scenario

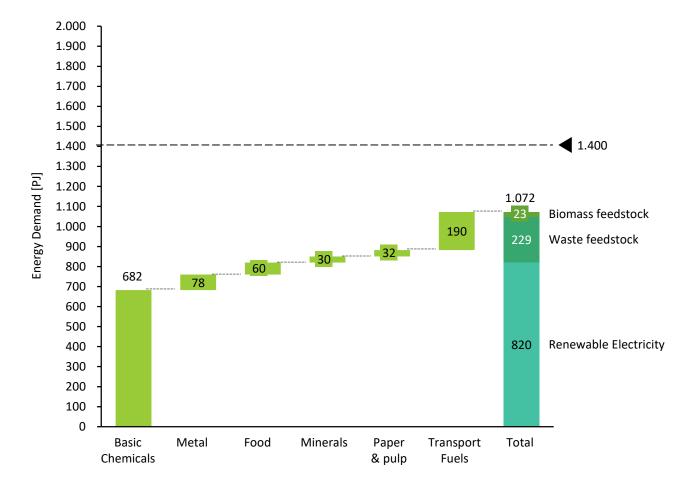
Sector	Subsector	Product	Processes				
			Current situation	A. All electric	B. Big on hydrogen	C. Competition	
Basic chemicals	Olefins (High Value Chemicals)	Ethylene, propylene, other	Current crude oil based processes	Bio (for growth) and waste based MTO/MTA are used for olefin production	Bio (for growth) and waste based MTO/MTA are used for olefin production	Use crude oil refining and naphta and gasoil steam cracking and residue gasification via MTO to produce olefins/aromatics (CCS waste incineration)	
	Chlorine		Current electrical process	Current electrical process	Current electrical process	Current electrical process	
	Ammonia	Fertilizer	Current natural gas based processes	Direct electrical ammonia synthesis	Indirect electrical ammonia synthesis via H2	Current gas based, decarbon electricity + CCS	
Transport	Freight road	Diesel	Combustion engines	Electric vehicles	H2 fuel cells	Biobased methanol	
	Passenger road	Gasoline, diesel, CNG and electricity	Combustion engines	Electric vehicles	H2 fuel cells	Biobased methanol	
	Aviation	Kerosene	Combustion engines	Electric airplanes	H2 fuel cells	Biobased kerosene	
Oil	Basic chemicals		Crude oil refining	None	None	Crude oil for feedstock	
refinery	Fuels		Crude oil refining	None	None	None	
Metal	Iron & steel:	Primary steel	Blast oxygen furnace	Electrowinning	Direct reduction H2 + EAF	HISARNA or TGR + Carbon Capture	
		Secondary steel	EAF, Secondary steel from scrap	EAF, Secondary steel from scrap	EAF, Secondary steel from scrap	EAF, Secondary steel from scrap + CCS	
	Aluminium		Current process	Current process	Current process	Current process	
Minerals -	Glass	Container glass, flat glass, glass fibre	Current processes	Electric oven	H2 oven	Synthetic CH4 oven + CCS	
	Cement	Cement	ENCI	None	None	None	
	Lime	Lime	No lime production	None	None	None	
Food		Milk powder, potato & sugar represent sector	Steam boilers	Heat pumps + compression + HT storage, breakthroughs	Heat pumps + compression + H2/fuel cells, fuel mix change	Biogas BAT, decarbon electricity	
Paper & pulp		Paper	Steam boilers	Heat pumps + compression + HT storage, breakthroughs	Heat pumps + compression + H2/fuel cells, fuel mix change	Biogas BAT, decarbon electricity	



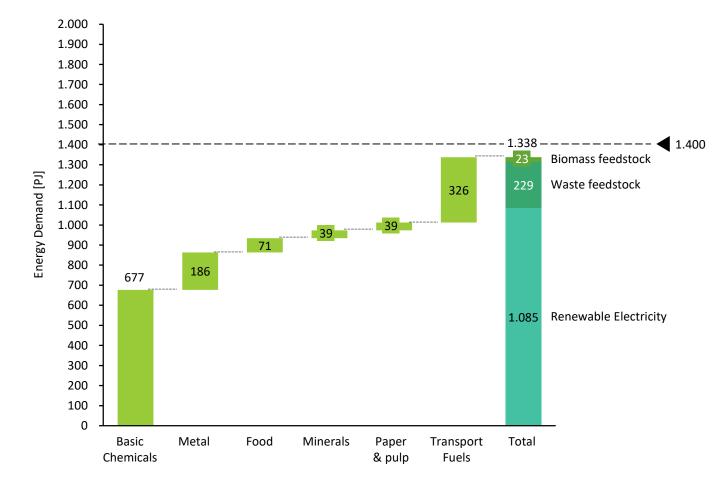
Current domestic CO₂ emissions (2010)


CO2 emissions [Mton]

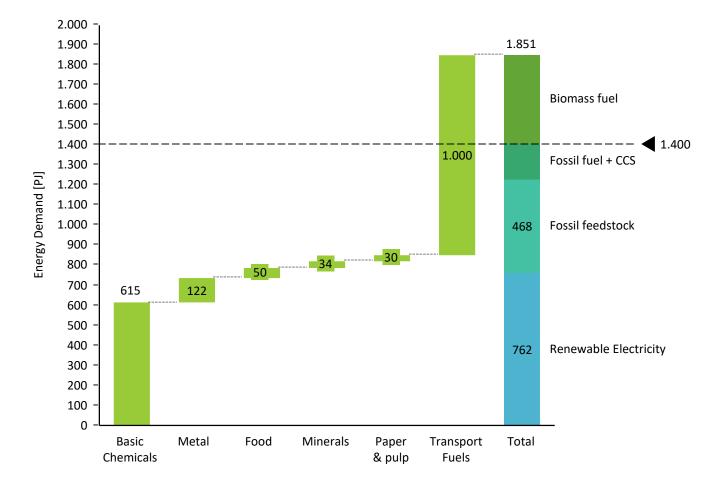
Basic chemicals (incl. export) and transport (excl. export) are dominant Life cycle CO2 including exports are comparable to total Dutch GHG emission (219 Mton)


Current situation

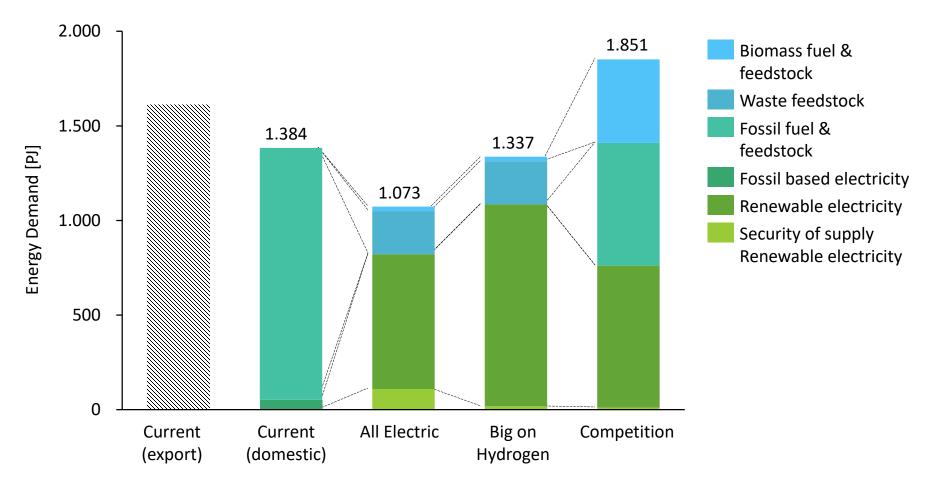
Energy and feedstocks almost completely fossil based


2050 Scenario All electric

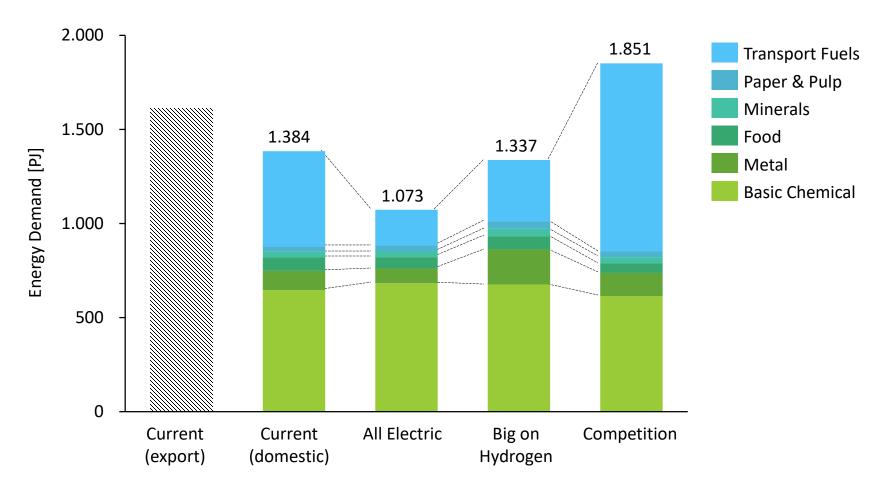
Direct electricity reduces energy demand with 20%; 2x NL North Sea wind, 25% total NS; completely fossil independent


2050 Scenario Big on hydrogen

Indirect electricity via hydrogen results in a more or less stable energy demand, completely fossil independent


2050 Scenario Competition

Increase of energy demand with 30%; biomass potential ~ 2 x NL; same electricity potential; crude oil and CCS needed


2050 Primary energy demand

North Sea wind potentials needed up to 2,5x NL North Sea wind, 30% total NS; C fossil dependent, biomass potential 2x NL

2050 Primary energy demand per sector

Sweet spots: All electric based road transport & steel, hydrogen based basic chemicals, bio in aviation?

Conclusions

- It is theoretically feasible to reduce life cycle CO₂ emissions by different electrification pathways to near 0 in 2050;
- 1,5–2,5x the <u>Dutch</u> wind energy potential on the North Sea is needed for transport (excl. bunkers) and heavy industry (incl. plastic export);
- Scenario All electric and Big on hydrogen are fossil fuel independent, Competition - relying partly on conventional technology with CCS - is not;
- Each scenario needs its own infrastructure with its challenges;
- A favorable scenario is likely a combination:
 - A. direct electrification in road transport, steel & minerals;
 - B. hydrogen in basic chemicals;
 - C. renewable alternatives in aviation, navigation and food & paper

Thank you for your attention

