Large Scale PEM Electrolysis for Industrial Applications

Hydrogen Solutions
ECCM Conference 2019 – Innovative electrochemistry

© Siemens AG 2019
www.siemens.com/silyzer
Hydrogen from renewables enables large scale long term storage and sector coupling

- Photovoltaic
- Wind power
- Grid stabilization
- PEM electrolysis
- H₂ generation
- H₂ conversion/storage

Exports for different applications:

- **Industry**: Hydrogen for ammonia production, petroleum refinement, metal production, flat glass, etc.
- **Mobility**: Hydrogen as alternative fuel or as feedstock for green fuels
- **Energy**: Hydrogen blending (gas grid), Remote energy supply/Off-grid
Silyzer portfolio scales up by factor 10 every 4-5 years driven by market demand and co-developed with our customers

Silyzer portfolio roadmap

- **2011**
 - **Silyzer 100**
 - Lab-scale demo
 - ~4,500 op.h
 - ~150k Nm³ of H₂

- **2015**
 - **Silyzer 200**
 - ~86,500 op.h
 - ~7.3 mio Nm³ of H₂
 - World’s largest Power-to-Gas plants with PEM electrolyzers in 2015 and 2017 built by Siemens!

- **2018**
 - **Silyzer 300**
 - Biggest PEM cell in the world built by Siemens!

- **2023+**
 - Next generation
 - Under development

- **2030+**
 - First investigations in cooperation with chemical industry

1 op.h.: operating hours; Data op.h & Nm³ as of Jan. 2019
<table>
<thead>
<tr>
<th>Silyzer 300 – the next paradigm in PEM electrolysis</th>
</tr>
</thead>
</table>
| **17.5 MW**
 Power demand per full Module Array (24 modules) |
| **75%**
 System efficiency (higher heating value) |
| **24 modules**
 to build a full Module Array |
| **340 kg**
 hydrogen per hour per full Module Array (24 modules) |

Silyzer 300 – Module Array (24 modules)
The Silyzer 300 enables primary reserve services with efficient hydrogen yield and maximum dynamics

<table>
<thead>
<tr>
<th>Start 0-100% H₂</th>
<th><1min, enabled for PFRS¹</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dynamics in range</td>
<td>≥ 10%/s in range 0-100%</td>
</tr>
</tbody>
</table>

![Graph showing hydrogen dynamics and operation phases](Image)

1. PFRS: Primary Frequency Reserve Service

Unrestricted © Siemens AG 2019

Page 5 June 2019

Siemens Hydrogen Solutions
Five main drivers for H_2 production cost

Technology specific drivers
- Efficiency
- Electrolyzer plant CAPEX
- Maintenance cost

H2 production cost

Site specific drivers
- Electricity price
- Uptime
With the Silyzer 300 you get a highly efficient plant

View for 17.5MW 24 modules:
air cooled
ISO conditions¹

~77%
~76%
~74%

1) ISO conditions: 15°C, 1013mbar, 0m, 60% rel. hum.
Unrestricted © Siemens AG 2019
Page 7 June 2019

Siemens Hydrogen Solutions
Hydrogen Production Cost in 2020

Operation time / h

1) Grey H_2: Hydrogen produced by conventional methods as steam methan reforming
2) € 6 ct./kWh: e.g. onshore wind (4-6ct./kWh) or PV in Germany
3) € 3 ct./kWh: Reachable in renewable intense regions like Nordics (Hydro Power), Patagonia (Wind), UAE (PV)
H2FUTURE – a European Flagship project for generation and use of green hydrogen

Project
- Partner: VERBUND (coordination), voestalpine, Austrian Power Grid (APG), TNO, K1-MET
- Country: Austria
- Installed: 2019
- Product: Silyzer 300

Use cases
- Hydrogen for the steel making process
- Supply grid services

Challenge
- Potential for “breakthrough” steelmaking technologies which replace carbon by green hydrogen as basis for further upscaling to industrial dimensions
- Installation and integration into an existing coke oven gas pipeline at the steel plant
- High electrolysis system efficiency of 80%

Solutions
- Operation of a 12-module array Silyzer 300
- Highly dynamic power consumption – enabling grid services
- State-of-the-art process control technology based on SIMATIC PCS 7

6 MW
Power demand based on Silyzer 300

1,200 Nm³
of green hydrogen per hour

This project has received funding from the Fuel Cells and Hydrogen 2 Joint Undertaking under grant agreement No 735503. This Joint Undertaking receives support from the European Union’s Horizon 2020 research and innovative programme and Hydrogen Europe and NERGHY.
Thank you!

Siemens Hydrogen Solutions
Guenther-Scharowsky-Str. 1
91058 Erlangen

www.siemens.com/silyzer